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    Abstract—This paper presents an edge-AIoT speech recognition 

system which is based on a new spiking feature extraction method 

and a PoolFormer neural network optimized for implementation 

on FPGA hardware. A Python-driven High-Level Synthesis (HLS) 

flow is adopted to accelerate software-to-hardware conversion for 

fast validation, demonstrating the potential of FPGA-based 

solutions in edge applications. This work provides a holistic end-

to-end solution for ultra-low-power speech recognition, leveraging 

HLS to bridge the gap between software and hardware 

development. Implemented in a Xilinx PYNQ-Z2 FPGA board, 

this optimized PoolFormer model achieved an speech recognition 

accuracy rate of 95.41% on the 35-class Google Commands dataset 

with a parameter count of 39k. 

 
Index Terms—High-level synthesis, PYNQ, Speech recognition, 

PoolFormer, Edge AIoT 

 

I. INTRODUCTION 

eep neural networks (DNNs) have been widely 

adopted in Artificial Intelligence of Things (AIoT) 

applications [1-3]. The growing demand for efficient, 

high-performance speech interfaces in applications ranging 

from home automation to smart cities has led developers to 

explore various hardware platforms, including System-on-Chip 

(SoC) [4] and hardware accelerator [5]. However, challenges 

such as high cost, power consumption, and design complexity 

limit the adoption of these solutions. In contrast, Field-

Programmable Gate Arrays (FPGAs) offer high parallelism, 

low power and hardware reconfigurability, making them a 

promising alternative solution for edge AIoT tasks [6-7]. 

Recent research focused on optimizing Long Short-Term 

Memory (LSTM) networks for FPGA deployment by 

addressing the issues related to computational complexity, 

memory footprint, and power consumption [8]. Meanwhile, 

Transformer-based models—which provide superior parallel 

computation, better capture long-range dependencies, and 

enhanced interpretability—are gaining favor over LSTMs [9]. 

Despite these advantages, traditional Verilog development 

faces challenges when compressing extensive Transformer 
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architectures for software-hardware co-design, highlighting the 

need for a high-level synthesis (HLS) framework tailored for 

edge AIoT speech recognition. 

Motivated by the success of PoolFormer in edge computing, 

this study introduces a Python-driven software-hardware co-

design framework that integrates a spiking feature extraction 

module with a PoolFormer model for speech recognition on 

FPGA hardware, specifically targeting the 35-class Google 

Commands dataset [10]. This work demonstrates not only the 

viability of FPGAs for efficient edge speech recognition and the 

advantage of HLS in accelerating the validation of software 

algorithm in hardware, but more importantly, the main novelty 

of this approach lies in the co-design and integration of an ultra-

low-power analog spiking feature extraction module with a 

highly quantized PoolFormer model. This tightly coupled 

system achieved a superior tradeoff between power 

consumption, hardware resource utilization, and recognition 

accuracy, making it well-suited for edge-AIoT speech systems. 

The rest of the paper is organized as follows. Section II 

introduce the structure of proposed edge speech recognition 

system with a novel spiking feature extraction. Section III 

presents FPGA implementation of PoolFormer with PYNQ 

platform. Section IV shows the simulation results and Section 

V concludes the paper. 

II. EDGE SPEECH RECOGNITION SYSTEM 

Fig. 1 shows the overall block diagram of the proposed 

PoolFormer edge speech recognition system. Firstly, the time-

domain signal undergoes a novel spiking feature extraction 

module to extract a frequency domain feature map. 

Subsequently, this feature map will be processed by a 

PoolFormer neural network for classification. 

A. Spiking Feature Extraction 

A novel Spiking Feature Extraction (SFE) module is proposed, 

combining analog MFCC computation with a spiking encoder to 
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achieve high accuracy, robustness, and ultra-low power. The 

circuit, designed and validated at schematic level in TSMC 

0.13 μm CMOS with all transistors in subthreshold, provides 

valuable insights into spectral fidelity and energy efficiency, 

though it does not fully capture real silicon effects such as layout 

parasitics and PVT variations. While our analog approach 

exhibits lower stopband attenuation and frequency selectivity 

than digital filters, it is still adopted here for its significant power 

savings and effective feature representation. The speech signal 

is amplified by a programmable gain amplifier (PGA) [11], then 

decomposed into Mel-scaled spectral bands by a 32-channel 

bandpass filter (BPF) bank—serving as an analog alternative to 

FFT. Squarer, switch, and integrator circuits then produce 32-

dimensional analog MFCC-like features over 32 ms frames, and 

a leaky integrate-and-fire (LIF) block encodes these as 

asynchronous spikes.  

The analog Spiking Feature Extraction circuit, shown in 

Fig.2. A flipped voltage follower (FVF) BPF structure is 

selected because it inherent current-reuse capability to conserve 

power consumption [13]. Additionally, its single-branch biasing 

and identical nMOS transistors enhance matching characteristics, 

ensuring robustness against process variations. In this work, the 

Q-factor is set to 1.7. The BPF voltage output is converted to 

current via a simple OTA, then squared in the SQR block, which 

employs a current-reuse Stacked Translinear Loop ‒ a nanowatt-

level power-efficient solution [14]. Switching, integration, and 

LIF functions are realized through a comparator-driven 

charge/discharge mechanism.  

Overall, an acoustic signal undergoes the following feature 

extraction through the aforementioned circuit to obtain the 

energy: 

𝐸(𝑖) =  
1

𝑇𝐼𝑁𝑇
∫ |𝑦(𝑡)|

𝑖𝑇𝐼𝑁𝑇

(𝑖−1)𝑇𝐼𝑁𝑇

2
𝑑𝑡                   (1) 

where 𝑦(𝑡) is the input acoustic signal, 𝑇𝐼𝑁𝑇  is the frame length, 

and 𝐸(𝑖) represents the energy extraction over the 𝑖𝑡ℎ  frame. 

This equation effectively computes the average energy of the 

input signal over each frame by integrating the square of the 

signal's amplitude over the given time interval 𝑇𝐼𝑁𝑇 . 

 The total power consumption of the proposed analog spiking 

feature extraction is 1.02µW during simulation as shown in Fig. 

3. Fig. 4 (a) shows its frequency response from the PGA input 

to the LIF output, exhibiting the expected bandpass 

characteristics across 32 channels. For comparison, Fig. 4 (b) 

illustrates the frequency response of a digital Mel filterbank. As 

observed, the proposed analog feature extraction demonstrates 

inferior performance in the stopband attenuation compared to 
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Fig. 2. Detailed circuit design of Spiking Feature Extraction based on analog-MFCC.  

 
Fig. 3. The power breakdown of proposed Spiking Feature Extraction. 
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Fig. 1. The overall structure of the Edge-AIoT speech recognition framework with a 2-stage PoolFormer structure including 12 and 4 Quantized PoolFormer 
Blocks (QPFB). The layer specifications of PoolFormer are shown on the right. 
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the digital filter. As shown in Fig. 4 (c) and Fig. 4 (d), using the 

keyword example “Bed” which contains most of its energy in 

the high-frequency range, the analog feature extraction shows a 

wider response and lower resolution in the high-frequency 

region. However, for speech recognition applications, the 

proposed PoolFormer network model effectively mitigates the 

impact of this difference. Accuracy drops by only 0.2% 

compared to digital processing. Yet the analog extraction 

consumes just 1.02 µW, much less than digital MFCC, which 

also requires ADC power [15]. Although schematic-level 

simulation does not capture all layout parasitics or PVT 

variations, our results still demonstrate a strong advantage in 

accuracy, robustness, and ultra-low power, supporting 

PoolFormer’s efficient architecture.  

B. Quantized PoolFormer Block (QPFB) 

    PoolFormer, which was previously studied in the context of 

edge computing, has demonstrated its good compatibility with 

FPGA hardware, primarily owing to its straightforward linear 

operations and reduced need for trainable parameters [16, 17]. 

In this work, the PoolFormer block is enhanced to fully leverage 

the advantages offered by FPGA.  

Since the pooling operation is parameter-free, the majority of 

trainable weights are concentrated in the channel MLP. To 

optimize FPGA resource utilization, we employ quantization 

for the channel MLP weights, specifically utilizing an INT8 

format with a symmetric quantization approach. The symmetric 

quantization process, depicted in Fig. 5, involves forcing the top 

2% absolute weights to align with the 98% weight boundary, 

while the remaining weights are scaled to the nearest levels 

within a range spanning from -127 to 127. This weight 

coefficient is then integrated into the scaling layer.  

𝑤𝑒𝑖𝑔ℎ𝑡 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =  
𝑤𝑒𝑖𝑔ℎ𝑡 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

127
             (2) 

               𝑤𝑒𝑖𝑔ℎ𝑡 𝑠𝑐𝑎𝑙𝑖𝑛𝑔𝑖 = ℎ𝑎𝑙𝑓(𝑠𝑐𝑎𝑙𝑖𝑛𝑔𝑖   

× 𝑤𝑒𝑖𝑔ℎ𝑡 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡)     (3) 

where 𝑖 is the channel number and ℎ𝑎𝑙𝑓(∙) denotes conversion 

of the output datatype to FP16 (16-bit floating-point), which 

reduces memory utilization and facilitates efficient data 

movement between layers in hardware. Additionally, the 

channel ratio has been decreased from 4 to 2 to further reduce 

the number of parameters within the PoolFormer block.  

III. FPGA IMPLEMENTATION 

A. Channel Pipeline for PoolFormer  

    High-Level Synthesis (HLS) is pivotal in modern electronic 

design, efficiently translating abstract algorithms into hardware. 

In this work, we simplify the process and reducing development 

time. In the context of neural network implementation in edge 

computing, HLS is crucial, enabling seamless software-

hardware co-design for optimized system performance. This is 

especially advantageous in edge computing, where resource 

constraints require efficient hardware acceleration for neural 

networks, facilitating real-time processing at the edge.  

    Traditionally, each layer is processed sequentially, channel 

by channel, resulting in high time and memory costs. To 

address this, we introduce a channel pipeline that enables 

concurrent processing across channels and four pipeline stages 

(Fig. 6). During FPGA implementation, key HLS directives 

such as #pragma HLS PIPELINE and #pragma HLS 

ARRAY_PARTITION are used to further improve resource 

utilization and throughput. 

    The pooling layer operates on the padded feature map using 

3×3 kernels and a stride of 1, performing average pooling. The 

sum of the values from the selected 9 cells is computed using 

an adder tree structure, and this sum is then added to the cached 

input after scaling multiplication. Following the caching of the 

output, the intermediate values are directed into the channel 

 
(a)                                                   (b) 

  
(c)                                           (d) 

Fig. 4. (a) frequency response of analog spiking feature extraction. (b) 

frequency response of digital Mel bandpass filterbank. (c) spectrogram of 

keyword “Bed” over different channel with analog feature extraction. (d) 
spectrogram of keyword “Bed” over different channel with digital Mel-

bandpass filterbank. 

 

Fig. 5. The example of the proposed symmetric quantization approach. 

 
Fig. 6. The quantized PoolFormer block (QPFB) structure 
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MLP layer. Given that cells in different channels are processed 

concurrently, the channel MLP layer is structured as two fully 

connected layers operating in a pipeline fashion. In the final 

stage, the resulting RTL file is exported as an IP core for the 

PoolFormer Block after completing the synthesis, mirroring the 

process for the patch embedding layer and MLP classifier.  

B. HLS Framework 

 The Xilinx PYNQ platform is a good candidate for edge 

computing and neural network implementation since it offers 

both FPGA hardware and Python programming feature. Fig. 7 

shows the flowchart to deploy NN accelerator on this platform. 

The flexibility and adaptability of PYNQ make it ideal for 

deployment of high performance customized neural network 

hardware accelerator. Additionally, it streamlines the 

deployment of custom hardware accelerators for neural 

networks, largely reducing the deployment time, while offering 

high performance and high energy efficiency. All these traits 

make PYNQ a valuable platform as edge AI devices.   

In this work, we utilized the PYNQ-Z2 platform, a System-

on-Chip (SoC) solution featuring both a processing system (PS) 

and programmable logic (PL) components. This platform 

enables the deployment of a high performance customized 

PoolFormer (PF) model. The PS is leveraged for its control 

logics while the PL is harnessed for neural network hardware 

acceleration. The architectural configuration of the developed 

accelerator is illustrated in Fig. 8.  

Within this setup, PS executes the python driver and is 

responsible for all the control logics including memory 

allocation for both weights and activations in the dynamic 

random-access memory (DRAM). On the other hand, PL 

consists of three hardware accelerator layer modules for three 

different neural network layers. Notably, each layer module 

running on the PL predominantly comprises of multiply and 

accumulations (MACs) array customized to compute each layer 

most efficiently. Due to the constrained on-chip memory 

capacity and the substantial number of parameters in the current 

model, the parameters associated with the target model and the 

resulting output feature tensor for each layer are stored in 

external memory. Consequently, the AXI4 master data movers 

play a critical role in establishing a connection between the on-

chip buffers and the external memory. Furthermore, AXI4 burst 

mode data transfers are employed to facilitate higher data 

throughput rates. 

IV. RESULTS 

Model quantization is a key step in converting the original 

software model to a hardware-deployable format. The 16-layer 

PoolFormer, initially trained in FP32, is fine-tuned and 

quantized symmetrically to INT8, with features represented in 

FP16. This optimized model is then deployed on the PYNQ-Z2 

platform (ZYNQ XC7Z020 SoC). After spiking feature 

extraction, input data is classified by the custom PYNQ 

framework. System-level power and end-to-end latency 

measurements are not reported here, as this study primarily 

focuses on feasibility and core module efficiency. 

The initial training phase for the PoolFormer network is 

conducted using FP32, achieving an accuracy rate of 95.64%. 

Subsequently, the model is transitioned to the proposed 

quantized system. Fig. 9 displays the outcomes of the fine-tuned 

retraining process and resource utilization. After post-

implementation, our proposed edge speech recognition system 

attains an impressive accuracy rate of 95.41% on the 35-class 

Google Commands dataset [10], all while maintaining resource 

utilization levels that are compatible with the PYNQ-Z2 board.  

 In Table I, we provide a comprehensive summary of results, 

facilitating a detailed comparison with recent speech 

recognition solutions. To ensure an equitable evaluation of 

network performance, we focus specifically on the Google 

Commands classification task, aligning our analysis with 

findings from various contemporary works in the field. While 

  

Fig.  7. The flowchart of the platform 

  

Fig.  8. The architectural configuration of the developed accelerator 

  

Resource Utilization Available Utilization% 

LUT 35640 53200 66.99 

FF 42528 106400 39.97 

BRAM 27.5 140 19.64 

DSP 156 220 70.91 

 
Fig.  9. The resultss of the fine-tuned retraining process and resource 

utilization on PYNQ-Z2 board. 
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metrics such as latency and throughput would offer further 

insight, our current comparison centers on accuracy and 

resource utilization due to measurement limitations and scope 

constraints. Notably, our research showcases a remarkable 

achievement in this context. Despite the relatively modest 

parameter count of our model, consisting of only 39k 

parameters, our proposed edge speech recognition system 

achieves outstanding results for 35-class recognition. This 

underscores the efficiency and effectiveness of our approach, 

positioning it as a highly competitive and viable solution within 

the realm of speech recognition technologies. Such 

accomplishments hold significant potential to advance the field 

of edge computing, particularly in scenarios where resource 

constraints and real-time processing are pivotal considerations. 

V. CONCLUSION 

    This study presented a Python-driven HLS framework to 

integrate a spiking feature extraction module with a PoolFormer 

model for speech recognition on FPGA hardware, specifically 

targeting the 35-class Google Commands dataset [10]. The 

analog spiking feature extraction circuit consumes only 

1.02 µW, and the system demonstrates a negligible accuracy 

drop of just 0.2% compared to its digital counterpart, achieving 

95.41% accuracy after quantization. The PoolFormer, with only 

39k parameters, maintains high performance while optimizing 

resource utilization on the PYNQ-Z2 board. This work 

demonstrates the viability of FPGAs for efficient edge speech 

recognition and highlights the advantages of HLS in 

accelerating the conversion from software algorithm to 

hardware for rapid validation. While the current system 

demonstrates excellent efficiency and accuracy for the 35-class 

Google Commands dataset, scaling to more complex tasks or 

substantially larger datasets may introduce challenges related to 

hardware resource limitations and real-time performance. 

Addressing these challenges will be an important focus of our 

future work. 
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