
1

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

FPGA Implementation of PoolFormer Network using

Python-Driven High-Level Synthesis Framework for

Edge-AIoT Speech Recognition

Tiancheng Cao, Member, IEEE, Zhongyi Zhang, Wei Soon Ng, Student Member, IEEE,

Wang Ling Goh, Senior Member, IEEE, and Yuan Gao, Member, IEEE

 Abstract—This paper presents an edge-AIoT speech recognition

system which is based on a new spiking feature extraction method

and a PoolFormer neural network optimized for implementation

on FPGA hardware. A Python-driven High-Level Synthesis (HLS)

flow is adopted to accelerate software-to-hardware conversion for

fast validation, demonstrating the potential of FPGA-based

solutions in edge applications. This work provides a holistic end-

to-end solution for ultra-low-power speech recognition, leveraging

HLS to bridge the gap between software and hardware

development. Implemented in a Xilinx PYNQ-Z2 FPGA board,

this optimized PoolFormer model achieved an speech recognition

accuracy rate of 95.41% on the 35-class Google Commands dataset

with a parameter count of 39k.

Index Terms—High-level synthesis, PYNQ, Speech recognition,

PoolFormer, Edge AIoT

I. INTRODUCTION

eep neural networks (DNNs) have been widely

adopted in Artificial Intelligence of Things (AIoT)

applications [1-3]. The growing demand for efficient,

high-performance speech interfaces in applications ranging

from home automation to smart cities has led developers to

explore various hardware platforms, including System-on-Chip

(SoC) [4] and hardware accelerator [5]. However, challenges

such as high cost, power consumption, and design complexity

limit the adoption of these solutions. In contrast, Field-

Programmable Gate Arrays (FPGAs) offer high parallelism,

low power and hardware reconfigurability, making them a

promising alternative solution for edge AIoT tasks [6-7].

Recent research focused on optimizing Long Short-Term

Memory (LSTM) networks for FPGA deployment by

addressing the issues related to computational complexity,

memory footprint, and power consumption [8]. Meanwhile,

Transformer-based models—which provide superior parallel

computation, better capture long-range dependencies, and

enhanced interpretability—are gaining favor over LSTMs [9].

Despite these advantages, traditional Verilog development

faces challenges when compressing extensive Transformer

This research is supported by Agency for Science, Technology and Research

(A*STAR), Singapore under the High Linearity Silicon Germanium Photonic
Modulator for 6G Analog Radio over Fiber Project, Grant No. M24M8b0004

and the Eric and Wendy Schmidt AI in Science Postdoctoral Fellowship, a

Schmidt Futures program. (Corresponding author: Yuan Gao)

architectures for software-hardware co-design, highlighting the

need for a high-level synthesis (HLS) framework tailored for

edge AIoT speech recognition.

Motivated by the success of PoolFormer in edge computing,

this study introduces a Python-driven software-hardware co-

design framework that integrates a spiking feature extraction

module with a PoolFormer model for speech recognition on

FPGA hardware, specifically targeting the 35-class Google

Commands dataset [10]. This work demonstrates not only the

viability of FPGAs for efficient edge speech recognition and the

advantage of HLS in accelerating the validation of software

algorithm in hardware, but more importantly, the main novelty

of this approach lies in the co-design and integration of an ultra-

low-power analog spiking feature extraction module with a

highly quantized PoolFormer model. This tightly coupled

system achieved a superior tradeoff between power

consumption, hardware resource utilization, and recognition

accuracy, making it well-suited for edge-AIoT speech systems.

The rest of the paper is organized as follows. Section II

introduce the structure of proposed edge speech recognition

system with a novel spiking feature extraction. Section III

presents FPGA implementation of PoolFormer with PYNQ

platform. Section IV shows the simulation results and Section

V concludes the paper.

II. EDGE SPEECH RECOGNITION SYSTEM

Fig. 1 shows the overall block diagram of the proposed

PoolFormer edge speech recognition system. Firstly, the time-

domain signal undergoes a novel spiking feature extraction

module to extract a frequency domain feature map.

Subsequently, this feature map will be processed by a

PoolFormer neural network for classification.

A. Spiking Feature Extraction

A novel Spiking Feature Extraction (SFE) module is proposed,

combining analog MFCC computation with a spiking encoder to

Tiancheng Cao, Zhongyi Zhang, Wei Soon Ng, and Goh Wang Ling are with

the School of Electrical and Electronic Engineering, Nanyang Technological
University, Singapore, 639798 (e-mail: tiancheng.cao@ntu.edu.sg;

zhongyi001@e.ntu.edu.sg; weisoon001@e.ntu.edu.sg; ewlgoh@ntu.edu.sg).

Yuan Gao is with the Institute of Microelectronics (IME), Agency for Science,
Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-02,

Singapore 138634, (e-mail: gaoy@a-star.edu.sg).

D

2

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

achieve high accuracy, robustness, and ultra-low power. The

circuit, designed and validated at schematic level in TSMC

0.13 μm CMOS with all transistors in subthreshold, provides

valuable insights into spectral fidelity and energy efficiency,

though it does not fully capture real silicon effects such as layout

parasitics and PVT variations. While our analog approach

exhibits lower stopband attenuation and frequency selectivity

than digital filters, it is still adopted here for its significant power

savings and effective feature representation. The speech signal

is amplified by a programmable gain amplifier (PGA) [11], then

decomposed into Mel-scaled spectral bands by a 32-channel

bandpass filter (BPF) bank—serving as an analog alternative to

FFT. Squarer, switch, and integrator circuits then produce 32-

dimensional analog MFCC-like features over 32 ms frames, and

a leaky integrate-and-fire (LIF) block encodes these as

asynchronous spikes.

The analog Spiking Feature Extraction circuit, shown in

Fig.2. A flipped voltage follower (FVF) BPF structure is

selected because it inherent current-reuse capability to conserve

power consumption [13]. Additionally, its single-branch biasing

and identical nMOS transistors enhance matching characteristics,

ensuring robustness against process variations. In this work, the

Q-factor is set to 1.7. The BPF voltage output is converted to

current via a simple OTA, then squared in the SQR block, which

employs a current-reuse Stacked Translinear Loop ‒ a nanowatt-

level power-efficient solution [14]. Switching, integration, and

LIF functions are realized through a comparator-driven

charge/discharge mechanism.

Overall, an acoustic signal undergoes the following feature

extraction through the aforementioned circuit to obtain the

energy:

𝐸(𝑖) =
1

𝑇𝐼𝑁𝑇
∫ |𝑦(𝑡)|

𝑖𝑇𝐼𝑁𝑇

(𝑖−1)𝑇𝐼𝑁𝑇

2
𝑑𝑡 (1)

where 𝑦(𝑡) is the input acoustic signal, 𝑇𝐼𝑁𝑇 is the frame length,

and 𝐸(𝑖) represents the energy extraction over the 𝑖𝑡ℎ frame.

This equation effectively computes the average energy of the

input signal over each frame by integrating the square of the

signal's amplitude over the given time interval 𝑇𝐼𝑁𝑇 .

 The total power consumption of the proposed analog spiking

feature extraction is 1.02µW during simulation as shown in Fig.

3. Fig. 4 (a) shows its frequency response from the PGA input

to the LIF output, exhibiting the expected bandpass

characteristics across 32 channels. For comparison, Fig. 4 (b)

illustrates the frequency response of a digital Mel filterbank. As

observed, the proposed analog feature extraction demonstrates

inferior performance in the stopband attenuation compared to

FVF BPF

IB1

Vo_PGA

VDD

C1=5pF

C2=15pF

Vo_BPF

VSS

M1

M2

OTA

Vo_BPF

Ra

Rb

Io_BPF

SQR

Io_BPF

Io_SQR

IB2

VB

M3

M4

M5

M6

M7 M8

VDD

VSS

Vo_LIF

Io_SQR
M13

Cint=1pF

VREF

M9 M10

M11 M12

IB3

Switch, Integrator and LIF

VDD

VSS

clk_switch

Analog-MFCC Spiking Encoder

fc1 =100Hz, fc2 =100Hz*1.1351,

fc3 =100Hz*1.135

fc32=100Hz*1.13531 5068Hz

Cap

trimming

Fig. 2. Detailed circuit design of Spiking Feature Extraction based on analog-MFCC.

Fig. 3. The power breakdown of proposed Spiking Feature Extraction.

Stage
Layer

Specification

Quantized

PoolFormer

Patch

Embedding

Patch

Size
3×3, stride 2

Embed.

Dim.
16

1

Pooling

Size
3×3, stride 1

MLP

Ratio
4

Block 12

Patch

Embedding

Patch

Size
3×3, stride 2

Embed.

Dim.
32

2

Pooling

Size
3×3, stride 1

MLP

Ratio
4

Block 4

Classifier MLP 128×35

Fig. 1. The overall structure of the Edge-AIoT speech recognition framework with a 2-stage PoolFormer structure including 12 and 4 Quantized PoolFormer
Blocks (QPFB). The layer specifications of PoolFormer are shown on the right.

3

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

the digital filter. As shown in Fig. 4 (c) and Fig. 4 (d), using the

keyword example “Bed” which contains most of its energy in

the high-frequency range, the analog feature extraction shows a

wider response and lower resolution in the high-frequency

region. However, for speech recognition applications, the

proposed PoolFormer network model effectively mitigates the

impact of this difference. Accuracy drops by only 0.2%

compared to digital processing. Yet the analog extraction

consumes just 1.02 µW, much less than digital MFCC, which

also requires ADC power [15]. Although schematic-level

simulation does not capture all layout parasitics or PVT

variations, our results still demonstrate a strong advantage in

accuracy, robustness, and ultra-low power, supporting

PoolFormer’s efficient architecture.

B. Quantized PoolFormer Block (QPFB)

 PoolFormer, which was previously studied in the context of

edge computing, has demonstrated its good compatibility with

FPGA hardware, primarily owing to its straightforward linear

operations and reduced need for trainable parameters [16, 17].

In this work, the PoolFormer block is enhanced to fully leverage

the advantages offered by FPGA.

Since the pooling operation is parameter-free, the majority of

trainable weights are concentrated in the channel MLP. To

optimize FPGA resource utilization, we employ quantization

for the channel MLP weights, specifically utilizing an INT8

format with a symmetric quantization approach. The symmetric

quantization process, depicted in Fig. 5, involves forcing the top

2% absolute weights to align with the 98% weight boundary,

while the remaining weights are scaled to the nearest levels

within a range spanning from -127 to 127. This weight

coefficient is then integrated into the scaling layer.

𝑤𝑒𝑖𝑔ℎ𝑡 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
𝑤𝑒𝑖𝑔ℎ𝑡 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

127
 (2)

 𝑤𝑒𝑖𝑔ℎ𝑡 𝑠𝑐𝑎𝑙𝑖𝑛𝑔𝑖 = ℎ𝑎𝑙𝑓(𝑠𝑐𝑎𝑙𝑖𝑛𝑔𝑖

× 𝑤𝑒𝑖𝑔ℎ𝑡 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡) (3)

where 𝑖 is the channel number and ℎ𝑎𝑙𝑓(∙) denotes conversion

of the output datatype to FP16 (16-bit floating-point), which

reduces memory utilization and facilitates efficient data

movement between layers in hardware. Additionally, the

channel ratio has been decreased from 4 to 2 to further reduce

the number of parameters within the PoolFormer block.

III. FPGA IMPLEMENTATION

A. Channel Pipeline for PoolFormer

 High-Level Synthesis (HLS) is pivotal in modern electronic

design, efficiently translating abstract algorithms into hardware.

In this work, we simplify the process and reducing development

time. In the context of neural network implementation in edge

computing, HLS is crucial, enabling seamless software-

hardware co-design for optimized system performance. This is

especially advantageous in edge computing, where resource

constraints require efficient hardware acceleration for neural

networks, facilitating real-time processing at the edge.

 Traditionally, each layer is processed sequentially, channel

by channel, resulting in high time and memory costs. To

address this, we introduce a channel pipeline that enables

concurrent processing across channels and four pipeline stages

(Fig. 6). During FPGA implementation, key HLS directives

such as #pragma HLS PIPELINE and #pragma HLS

ARRAY_PARTITION are used to further improve resource

utilization and throughput.

 The pooling layer operates on the padded feature map using

3×3 kernels and a stride of 1, performing average pooling. The

sum of the values from the selected 9 cells is computed using

an adder tree structure, and this sum is then added to the cached

input after scaling multiplication. Following the caching of the

output, the intermediate values are directed into the channel

(a) (b)

(c) (d)

Fig. 4. (a) frequency response of analog spiking feature extraction. (b)

frequency response of digital Mel bandpass filterbank. (c) spectrogram of

keyword “Bed” over different channel with analog feature extraction. (d)
spectrogram of keyword “Bed” over different channel with digital Mel-

bandpass filterbank.

Fig. 5. The example of the proposed symmetric quantization approach.

Fig. 6. The quantized PoolFormer block (QPFB) structure

4

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

MLP layer. Given that cells in different channels are processed

concurrently, the channel MLP layer is structured as two fully

connected layers operating in a pipeline fashion. In the final

stage, the resulting RTL file is exported as an IP core for the

PoolFormer Block after completing the synthesis, mirroring the

process for the patch embedding layer and MLP classifier.

B. HLS Framework

 The Xilinx PYNQ platform is a good candidate for edge

computing and neural network implementation since it offers

both FPGA hardware and Python programming feature. Fig. 7

shows the flowchart to deploy NN accelerator on this platform.

The flexibility and adaptability of PYNQ make it ideal for

deployment of high performance customized neural network

hardware accelerator. Additionally, it streamlines the

deployment of custom hardware accelerators for neural

networks, largely reducing the deployment time, while offering

high performance and high energy efficiency. All these traits

make PYNQ a valuable platform as edge AI devices.

In this work, we utilized the PYNQ-Z2 platform, a System-

on-Chip (SoC) solution featuring both a processing system (PS)

and programmable logic (PL) components. This platform

enables the deployment of a high performance customized

PoolFormer (PF) model. The PS is leveraged for its control

logics while the PL is harnessed for neural network hardware

acceleration. The architectural configuration of the developed

accelerator is illustrated in Fig. 8.

Within this setup, PS executes the python driver and is

responsible for all the control logics including memory

allocation for both weights and activations in the dynamic

random-access memory (DRAM). On the other hand, PL

consists of three hardware accelerator layer modules for three

different neural network layers. Notably, each layer module

running on the PL predominantly comprises of multiply and

accumulations (MACs) array customized to compute each layer

most efficiently. Due to the constrained on-chip memory

capacity and the substantial number of parameters in the current

model, the parameters associated with the target model and the

resulting output feature tensor for each layer are stored in

external memory. Consequently, the AXI4 master data movers

play a critical role in establishing a connection between the on-

chip buffers and the external memory. Furthermore, AXI4 burst

mode data transfers are employed to facilitate higher data

throughput rates.

IV. RESULTS

Model quantization is a key step in converting the original

software model to a hardware-deployable format. The 16-layer

PoolFormer, initially trained in FP32, is fine-tuned and

quantized symmetrically to INT8, with features represented in

FP16. This optimized model is then deployed on the PYNQ-Z2

platform (ZYNQ XC7Z020 SoC). After spiking feature

extraction, input data is classified by the custom PYNQ

framework. System-level power and end-to-end latency

measurements are not reported here, as this study primarily

focuses on feasibility and core module efficiency.

The initial training phase for the PoolFormer network is

conducted using FP32, achieving an accuracy rate of 95.64%.

Subsequently, the model is transitioned to the proposed

quantized system. Fig. 9 displays the outcomes of the fine-tuned

retraining process and resource utilization. After post-

implementation, our proposed edge speech recognition system

attains an impressive accuracy rate of 95.41% on the 35-class

Google Commands dataset [10], all while maintaining resource

utilization levels that are compatible with the PYNQ-Z2 board.

 In Table I, we provide a comprehensive summary of results,

facilitating a detailed comparison with recent speech

recognition solutions. To ensure an equitable evaluation of

network performance, we focus specifically on the Google

Commands classification task, aligning our analysis with

findings from various contemporary works in the field. While

Fig. 7. The flowchart of the platform

Fig. 8. The architectural configuration of the developed accelerator

Resource Utilization Available Utilization%

LUT 35640 53200 66.99

FF 42528 106400 39.97

BRAM 27.5 140 19.64

DSP 156 220 70.91

Fig. 9. The resultss of the fine-tuned retraining process and resource

utilization on PYNQ-Z2 board.

5

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

metrics such as latency and throughput would offer further

insight, our current comparison centers on accuracy and

resource utilization due to measurement limitations and scope

constraints. Notably, our research showcases a remarkable

achievement in this context. Despite the relatively modest

parameter count of our model, consisting of only 39k

parameters, our proposed edge speech recognition system

achieves outstanding results for 35-class recognition. This

underscores the efficiency and effectiveness of our approach,

positioning it as a highly competitive and viable solution within

the realm of speech recognition technologies. Such

accomplishments hold significant potential to advance the field

of edge computing, particularly in scenarios where resource

constraints and real-time processing are pivotal considerations.

V. CONCLUSION

 This study presented a Python-driven HLS framework to

integrate a spiking feature extraction module with a PoolFormer

model for speech recognition on FPGA hardware, specifically

targeting the 35-class Google Commands dataset [10]. The

analog spiking feature extraction circuit consumes only

1.02 µW, and the system demonstrates a negligible accuracy

drop of just 0.2% compared to its digital counterpart, achieving

95.41% accuracy after quantization. The PoolFormer, with only

39k parameters, maintains high performance while optimizing

resource utilization on the PYNQ-Z2 board. This work

demonstrates the viability of FPGAs for efficient edge speech

recognition and highlights the advantages of HLS in

accelerating the conversion from software algorithm to

hardware for rapid validation. While the current system

demonstrates excellent efficiency and accuracy for the 35-class

Google Commands dataset, scaling to more complex tasks or

substantially larger datasets may introduce challenges related to

hardware resource limitations and real-time performance.

Addressing these challenges will be an important focus of our

future work.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification

with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6,
pp. 84–90, May 2017.

[2] T. Cao et al., “A non-idealities aware software–hardware co-design

framework for edge-AI deep neural network implemented on memristive
crossbar,” IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 12, no. 4, pp.

934-943, Dec. 2022.
[3] T. Cao, C. Liu, Y. Gao, and W. L. Goh, “Parasitic-aware modeling and

neural network training scheme for energy-efficient processing-in-

memory with resistive crossbar array,” IEEE J. Emerg. Sel. Topics
Circuits Syst., vol. 12, no. 2, pp. 436-444, June 2022, doi:

10.1109/JETCAS.2022.3172170.

[4] Meloni P, Deriu G, Conti F, et al. “A high-efficiency runtime
reconfigurable IP for CNN acceleration on a mid-range all programmable

SoC,” 2016 IEEE International Conference on ReConFigurable

Computing and FPGAs (ReConFig), 2016.
[5] Y. Wang et al., “AutoMap: automatic mapping of neural networks to deep

learning accelerators for edge devices,” IEEE Trans. Comput. Aided Des.

Integr. Circuits Syst., vol. 42, no. 9, pp. 2994-3006, Sept. 2023
[6] M. Ahn et al., “AIX: a high performance and energy efficient inference

accelerator on FPGA for a DNN-based commercial speech recognition,”

2019 Design, Automation & Test in Europe Conference & Exhibition
(DATE), Florence, Italy, 2019.

[7] T. Cao, W.S. Ng, W. L. Goh and Y. Gao, “DWT-PoolFormer: Discrete

wavelet transform-based quantized parallel PoolFormer network
implemented in FPGA for wearable ECG monitoring,” 2024 IEEE

Biomedical Circuits and Systems Conference (BioCAS), Xi’an, China,

2024.
[8] S. Han, et al., “ESE: Efficient Speech Recognition Engine with Sparse

LSTM on FPGA,” 2017 ACM/SIGDA international symposium on Field-

programmable gate arrays, 2017.
[9] A. Vaswani, et al., “Attention is all you need,” Advances in Neural

Information Processing Systems (NIPS), 2017.
[10] P. Warden, “Speech commands: A dataset for limited-vocabulary speech

recognition,” arXiv:1804.03209, 2018, [online] Available:

https://arxiv.org/abs/1804.03209.
[11] M. Croce, B. Friend, F. Nesta, L. Crespi, P. Malcovati and A. Baschirotto,

“A 760-nW, 180-nm CMOS fully analog voice activity detection system

for domestic environment,” IEEE J. Solid-State Circuits, vol. 56, no. 3,
pp. 778-787, Mar. 2021.

[12] S. Davis and P. Mermelstein, “Comparison of parametric representations

for monosyllabic word recognition in continuously spoken sentences,”
IEEE Trans. Acoust., Speech, Signal Process., vol. 28, no. 4, pp. 357-366,

Aug. 1980, doi: 10.1109/TASSP.1980.1163420.

[13] R. G. Carvajal et al., "The flipped voltage follower: a useful cell for low-

voltage low-power circuit design IEEE Trans. Circuits Syst. I, Reg.

Papers, vol. 52, no. 7, pp. 1276-1291, July 2005, doi:

10.1109/TCSI.2005.851387.
[14] Z. Zhang, T. Zhang, C. Shen, W. L. Goh and Y. Gao, "A Nanowatt

Temperature-Independent Tunable Active Capacitance Multiplier with

DC Compensation in 0.13−μm CMOS," 2023 IEEE International
Symposium on Circuits and Systems (ISCAS), Monterey, CA, USA, 2023,

pp. 1-5, doi: 10.1109/ISCAS46773.2023.10181779.

[15] R. Mittal et al., "A 6.4-GS/s 1-GHz BW Continuous-Time Pipelined ADC
With Time-Interleaved Sub-ADC-DAC Achieving 61.7-dB SNDR in 16-

nm FinFET," in IEEE Journal of Solid-State Circuits, vol. 59, no. 4, pp.

1158-1170, April 2024, doi: 10.1109/JSSC.2023.3338686.
[16] T. Cao, W. Yu, Y. Gao, C. Liu, S. Yan and W. L. Goh, “RRAM-

PoolFormer: a resistive memristor-based PoolFormer modeling and

training framework for edge-AI applications,” 2023 IEEE International
Symposium on Circuits and Systems (ISCAS), Monterey, CA, USA, 2023

[17] T. Cao et al., “Edge PoolFormer: Modeling and training of PoolFormer

network on RRAM crossbar for edge-AI applications,” IEEE Trans. Very

Large Scale Integr. (VLSI) Syst., vol. 33, no. 2, pp. 384-394, Feb. 2025,

doi: 10.1109/TVLSI.2024.3472270.

[18] J. S. P. Giraldo, V. Jain, and M. Verhelst, “Efficient execution of temporal
convolutional networks for embedded keyword spotting,” IEEE Trans.

Very Large Scale Integr. (VLSI) Syst., vol. 29, no. 12, pp. 2220–2228, Dec.

2021, doi: 10.1109/TVLSI.2021.3120189.
[19] J. Yoon, D. Lee, N. Kim, S. -J. Lee, G. -H. Kwak and T. -H. Kim, “A real-

time keyword spotting system based on an end-to-end binary

convolutional neural network in FPGA,” 2023 IEEE Symposium in Low-
Power and High-Speed Chips (COOL CHIPS), Tokyo, Japan, 2023.

[20] S. Yang, Z. Gong, K. Ye, Y. Wei, Z. Huang and Z. Huang, “EdgeRNN: a

compact speech recognition network with spatio-temporal features for
edge computing,” IEEE Access, vol. 8, pp. 81468-81478, 2020.

[21] B. Kim, S. Chang, J. Lee, and D. Sung, “Broadcasted Residual Learning

for Efficient Keyword Spotting,” in Proc. INTERSPEECH, 2021.

Table. I. Performance Comparison

 This

Work
[18] [19] [20] [21]

FPGA/Rpi

Zynq

XC7Z0

20

SOMA

acceler

ator

Intel

Cyclone

V

Rpi 3B+
No

Hardware

Resolution

(W/A)
8b/16b 8b/32b 1b/NR 32b/32b 32b/32b

class 35 12 10 10 12

process SFE MFCC MFCC MFCC MFCC

Network
PoolFo

rmer
TCN CNN RNN

BCResN

et-3

Input size 32×32 40×60 1024×16 152×181 40×100

No. weight 39k 23k 433k 830k 54.2k

accuracy 95.41 93.31 90.3 96.62 97.6

https://arxiv.org/abs/1804.03209

