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Abstract—This paper presents an edge-AloT speech recognition
system which is based on a new spiking feature extraction method
and a PoolFormer neural network optimized for implementation
on FPGA hardware. A Python-driven High-Level Synthesis (HLS)
flow is adopted to accelerate software-to-hardware conversion for
fast validation, demonstrating the potential of FPGA-based
solutions in edge applications. This work provides a holistic end-
to-end solution for ultra-low-power speech recognition, leveraging
HLS to bridge the gap between software and hardware
development. Implemented in a Xilinx PYNQ-Z2 FPGA board,
this optimized PoolFormer model achieved an speech recognition
accuracy rate of 95.41% on the 35-class Google Commands dataset
with a parameter count of 39k.

Index Terms—High-level synthesis, PYNQ, Speech recognition,
PoolFormer, Edge AloT

I. INTRODUCTION

eep neural networks (DNNs) have been widely
adopted in Artificial Intelligence of Things (AloT)
applications [1-3]. The growing demand for efficient,
high-performance speech interfaces in applications ranging
from home automation to smart cities has led developers to
explore various hardware platforms, including System-on-Chip
(SoC) [4] and hardware accelerator [5]. However, challenges
such as high cost, power consumption, and design complexity
limit the adoption of these solutions. In contrast, Field-
Programmable Gate Arrays (FPGASs) offer high parallelism,
low power and hardware reconfigurability, making them a
promising alternative solution for edge AloT tasks [6-7].
Recent research focused on optimizing Long Short-Term
Memory (LSTM) networks for FPGA deployment by
addressing the issues related to computational complexity,
memory footprint, and power consumption [8]. Meanwhile,
Transformer-based models—which provide superior parallel
computation, better capture long-range dependencies, and
enhanced interpretability—are gaining favor over LSTMs [9].
Despite these advantages, traditional Verilog development
faces challenges when compressing extensive Transformer
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architectures for software-hardware co-design, highlighting the
need for a high-level synthesis (HLS) framework tailored for
edge AloT speech recognition.

Motivated by the success of PoolFormer in edge computing,
this study introduces a Python-driven software-hardware co-
design framework that integrates a spiking feature extraction
module with a PoolFormer model for speech recognition on
FPGA hardware, specifically targeting the 35-class Google
Commands dataset [10]. This work demonstrates not only the
viability of FPGAs for efficient edge speech recognition and the
advantage of HLS in accelerating the validation of software
algorithm in hardware, but more importantly, the main novelty
of this approach lies in the co-design and integration of an ultra-
low-power analog spiking feature extraction module with a
highly quantized PoolFormer model. This tightly coupled
system achieved a superior tradeoff between power
consumption, hardware resource utilization, and recognition
accuracy, making it well-suited for edge-AloT speech systems.

The rest of the paper is organized as follows. Section 1l
introduce the structure of proposed edge speech recognition
system with a novel spiking feature extraction. Section Il
presents FPGA implementation of PoolFormer with PYNQ
platform. Section IV shows the simulation results and Section
V concludes the paper.

I11. EDGE SPEECH RECOGNITION SYSTEM

Fig. 1 shows the overall block diagram of the proposed
PoolFormer edge speech recognition system. Firstly, the time-
domain signal undergoes a novel spiking feature extraction
module to extract a frequency domain feature map.
Subsequently, this feature map will be processed by a
PoolFormer neural network for classification.

A. Spiking Feature Extraction

A novel Spiking Feature Extraction (SFE) module is proposed,
combining analog MFCC computation with a spiking encoder to
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Fig. 1. The overall structure of the Edge-AloT speech recognition framework with a 2-stage PoolFormer structure including 12 and 4 Quantized PoolFormer

Blocks (QPFB). The layer specifications of PoolFormer are shown on the right.
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Fig. 2. Detailed circuit design of Spiking Feature Extraction based on analog-MFCC.
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Fig. 3. The power breakdown of proposed Spiking Feature Extraction.

achieve high accuracy, robustness, and ultra-low power. The
circuit, designed and validated at schematic level in TSMC
0.13 um CMOS with all transistors in subthreshold, provides
valuable insights into spectral fidelity and energy efficiency,
though it does not fully capture real silicon effects such as layout
parasitics and PVT variations. While our analog approach
exhibits lower stopband attenuation and frequency selectivity
than digital filters, it is still adopted here for its significant power
savings and effective feature representation. The speech signal
is amplified by a programmable gain amplifier (PGA) [11], then
decomposed into Mel-scaled spectral bands by a 32-channel
bandpass filter (BPF) bank—serving as an analog alternative to
FFT. Squarer, switch, and integrator circuits then produce 32-
dimensional analog MFCC-like features over 32 ms frames, and
a leaky integrate-and-fire (LIF) block encodes these as
asynchronous spikes.

The analog Spiking Feature Extraction circuit, shown in
Fig.2. A flipped voltage follower (FVF) BPF structure is
selected because it inherent current-reuse capability to conserve

power consumption [13]. Additionally, its single-branch biasing
and identical nMOS transistors enhance matching characteristics,
ensuring robustness against process variations. In this work, the
Q-factor is set to 1.7. The BPF voltage output is converted to
current via a simple OTA, then squared in the SQR block, which
employs a current-reuse Stacked Translinear Loop — a nanowatt-
level power-efficient solution [14]. Switching, integration, and
LIF functions are realized through a comparator-driven
charge/discharge mechanism.

Overall, an acoustic signal undergoes the following feature
extraction through the aforementioned circuit to obtain the
energy:

N 1 iTINT z
E(l) - m (i—l)TINle(t)l dt (1)

where y(t) isthe input acoustic signal, Ty is the frame length,
and E (i) represents the energy extraction over the it" frame.
This equation effectively computes the average energy of the
input signal over each frame by integrating the square of the
signal's amplitude over the given time interval T;yr.

The total power consumption of the proposed analog spiking
feature extraction is 1.02 W during simulation as shown in Fig.
3. Fig. 4 (a) shows its frequency response from the PGA input
to the LIF output, exhibiting the expected bandpass
characteristics across 32 channels. For comparison, Fig. 4 (b)
illustrates the frequency response of a digital Mel filterbank. As
observed, the proposed analog feature extraction demonstrates
inferior performance in the stopband attenuation compared to
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Fig. 4. (a) frequency response of analog spiking feature extraction. (b)
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the digital filter. As shown in Fig. 4 (c) and Fig. 4 (d), using the
keyword example “Bed” which contains most of its energy in
the high-frequency range, the analog feature extraction shows a
wider response and lower resolution in the high-frequency
region. However, for speech recognition applications, the
proposed PoolFormer network model effectively mitigates the
impact of this difference. Accuracy drops by only 0.2%
compared to digital processing. Yet the analog extraction
consumes just 1.02 pW, much less than digital MFCC, which
also requires ADC power [15]. Although schematic-level
simulation does not capture all layout parasitics or PVT
variations, our results still demonstrate a strong advantage in
accuracy, robustness, and ultra-low power, supporting
PoolFormer’s efficient architecture.

B. Quantized PoolFormer Block (QPFB)

PoolFormer, which was previously studied in the context of
edge computing, has demonstrated its good compatibility with
FPGA hardware, primarily owing to its straightforward linear
operations and reduced need for trainable parameters [16, 17].
In this work, the PoolFormer block is enhanced to fully leverage
the advantages offered by FPGA.

Since the pooling operation is parameter-free, the majority of
trainable weights are concentrated in the channel MLP. To
optimize FPGA resource utilization, we employ quantization
for the channel MLP weights, specifically utilizing an INT8
format with a symmetric quantization approach. The symmetric
quantization process, depicted in Fig. 5, involves forcing the top
2% absolute weights to align with the 98% weight boundary,
while the remaining weights are scaled to the nearest levels
within a range spanning from -127 to 127. This weight
coefficient is then integrated into the scaling layer.
weight boundary (2)

127
weight scaling; = half (scaling;

X weight coef ficient) (3)

weight coef ficient =

where i is the channel number and half (+) denotes conversion

N Quantized weight

I Weight

Fig. 5. The example of the proposed symmetric quantization approach.
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Fig. 6. The quantized PoolFormer block (QPFB) structure

of the output datatype to FP16 (16-bit floating-point), which
reduces memory utilization and facilitates efficient data
movement between layers in hardware. Additionally, the
channel ratio has been decreased from 4 to 2 to further reduce
the number of parameters within the PoolFormer block.

I1l. FPGA IMPLEMENTATION

A. Channel Pipeline for PoolFormer

High-Level Synthesis (HLS) is pivotal in modern electronic
design, efficiently translating abstract algorithms into hardware.
In this work, we simplify the process and reducing development
time. In the context of neural network implementation in edge
computing, HLS is crucial, enabling seamless software-
hardware co-design for optimized system performance. This is
especially advantageous in edge computing, where resource
constraints require efficient hardware acceleration for neural
networks, facilitating real-time processing at the edge.

Traditionally, each layer is processed sequentially, channel
by channel, resulting in high time and memory costs. To
address this, we introduce a channel pipeline that enables
concurrent processing across channels and four pipeline stages
(Fig. 6). During FPGA implementation, key HLS directives
such as #pragma HLS PIPELINE and #pragma HLS
ARRAY_PARTITION are used to further improve resource
utilization and throughput.

The pooling layer operates on the padded feature map using
3>3 kernels and a stride of 1, performing average pooling. The
sum of the values from the selected 9 cells is computed using
an adder tree structure, and this sum is then added to the cached
input after scaling multiplication. Following the caching of the
output, the intermediate values are directed into the channel
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MLP layer. Given that cells in different channels are processed
concurrently, the channel MLP layer is structured as two fully
connected layers operating in a pipeline fashion. In the final
stage, the resulting RTL file is exported as an IP core for the
PoolFormer Block after completing the synthesis, mirroring the
process for the patch embedding layer and MLP classifier.

B. HLS Framework

The Xilinx PYNQ platform is a good candidate for edge
computing and neural network implementation since it offers
both FPGA hardware and Python programming feature. Fig. 7
shows the flowchart to deploy NN accelerator on this platform.
The flexibility and adaptability of PYNQ make it ideal for
deployment of high performance customized neural network
hardware accelerator. Additionally, it streamlines the
deployment of custom hardware accelerators for neural
networks, largely reducing the deployment time, while offering
high performance and high energy efficiency. All these traits
make PYNQ a valuable platform as edge Al devices.

In this work, we utilized the PYNQ-Z2 platform, a System-
on-Chip (SoC) solution featuring both a processing system (PS)
and programmable logic (PL) components. This platform
enables the deployment of a high performance customized
PoolFormer (PF) model. The PS is leveraged for its control
logics while the PL is harnessed for neural network hardware
acceleration. The architectural configuration of the developed
accelerator is illustrated in Fig. 8.

Within this setup, PS executes the python driver and is
responsible for all the control logics including memory
allocation for both weights and activations in the dynamic
random-access memory (DRAM). On the other hand, PL
consists of three hardware accelerator layer modules for three
different neural network layers. Notably, each layer module
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Fig. 9. The resultss of the fine-tuned retraining process and resource
utilization on PYNQ-Z2 board.

running on the PL predominantly comprises of multiply and
accumulations (MACSs) array customized to compute each layer
most efficiently. Due to the constrained on-chip memory
capacity and the substantial number of parameters in the current
model, the parameters associated with the target model and the
resulting output feature tensor for each layer are stored in
external memory. Consequently, the AXI4 master data movers
play a critical role in establishing a connection between the on-
chip buffers and the external memory. Furthermore, AXI14 burst
mode data transfers are employed to facilitate higher data
throughput rates.

IV.RESULTS

Model quantization is a key step in converting the original
software model to a hardware-deployable format. The 16-layer
PoolFormer, initially trained in FP32, is fine-tuned and
quantized symmetrically to INT8, with features represented in
FP16. This optimized model is then deployed on the PYNQ-Z2
platform (ZYNQ XC7Z020 SoC). After spiking feature
extraction, input data is classified by the custom PYNQ
framework. System-level power and end-to-end latency
measurements are not reported here, as this study primarily
focuses on feasibility and core module efficiency.

The initial training phase for the PoolFormer network is
conducted using FP32, achieving an accuracy rate of 95.64%.
Subsequently, the model is transitioned to the proposed
quantized system. Fig. 9 displays the outcomes of the fine-tuned
retraining process and resource utilization. After post-
implementation, our proposed edge speech recognition system
attains an impressive accuracy rate of 95.41% on the 35-class
Google Commands dataset [10], all while maintaining resource
utilization levels that are compatible with the PYNQ-Z2 board.

In Table I, we provide a comprehensive summary of results,
facilitating a detailed comparison with recent speech
recognition solutions. To ensure an equitable evaluation of
network performance, we focus specifically on the Google
Commands classification task, aligning our analysis with
findings from various contemporary works in the field. While



> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Table. |. Performance Comparison
This

Work [18] [19] [20] [21]
Zynq SOMA Intel No
FPGA/Rpi | XC7Z0 | acceler | Cyclone Rpi 3B+
Hardware
20 ator Vv
Resolution
(WIA) 8b/16b | 8b/32b 1b/NR 32b/32b 32b/32b
class 35 12 10 10 12
process SFE MFCC MFCC MFCC MFCC
Network | P00 | ten | enw RNN | BCResN
rmer et-3
Input size 32>32 40>60 102416 | 152x%181 40x100
No. weight 39k 23k 433k 830k 54.2k
accuracy 95.41 93.31 90.3 96.62 97.6

metrics such as latency and throughput would offer further
insight, our current comparison centers on accuracy and
resource utilization due to measurement limitations and scope
constraints. Notably, our research showcases a remarkable
achievement in this context. Despite the relatively modest
parameter count of our model, consisting of only 39k
parameters, our proposed edge speech recognition system
achieves outstanding results for 35-class recognition. This
underscores the efficiency and effectiveness of our approach,
positioning it as a highly competitive and viable solution within
the realm of speech recognition technologies. Such
accomplishments hold significant potential to advance the field
of edge computing, particularly in scenarios where resource
constraints and real-time processing are pivotal considerations.

V. CONCLUSION

This study presented a Python-driven HLS framework to
integrate a spiking feature extraction module with a PoolFormer
model for speech recognition on FPGA hardware, specifically
targeting the 35-class Google Commands dataset [10]. The
analog spiking feature extraction circuit consumes only
1.02 uW, and the system demonstrates a negligible accuracy
drop of just 0.2% compared to its digital counterpart, achieving
95.41% accuracy after quantization. The PoolFormer, with only
39k parameters, maintains high performance while optimizing
resource utilization on the PYNQ-Z2 board. This work
demonstrates the viability of FPGAs for efficient edge speech
recognition and highlights the advantages of HLS in
accelerating the conversion from software algorithm to
hardware for rapid validation. While the current system
demonstrates excellent efficiency and accuracy for the 35-class
Google Commands dataset, scaling to more complex tasks or
substantially larger datasets may introduce challenges related to
hardware resource limitations and real-time performance.
Addressing these challenges will be an important focus of our
future work.

REFERENCES

[1] A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6,
pp. 84-90, May 2017.

[2] T. Cao et al, “A non-idealities aware software—hardware co-design
framework for edge-Al deep neural network implemented on memristive
crossbar,” IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 12, no. 4, pp.

B3]

(4]

[5]

(6]

(71

8l

(9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

934-943, Dec. 2022.

T. Cao, C. Liu, Y. Gao, and W. L. Goh, “Parasitic-aware modeling and
neural network training scheme for energy-efficient processing-in-
memory with resistive crossbar array,” IEEE J. Emerg. Sel. Topics
Circuits Syst, vol. 12, no. 2, pp. 436-444, June 2022, doi:
10.1109/JETCAS.2022.3172170.

Meloni P, Deriu G, Conti F, et al. “A high-efficiency runtime
reconfigurable IP for CNN acceleration on a mid-range all programmable
SoC,” 2016 IEEE International Conference on ReConFigurable
Computing and FPGAs (ReConFig), 2016.

Y. Wang et al., “AutoMap: automatic mapping of neural networks to deep
learning accelerators for edge devices,” IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst., vol. 42, no. 9, pp. 2994-3006, Sept. 2023

M. Ahn et al., “AIX: a high performance and energy efficient inference
accelerator on FPGA for a DNN-based commercial speech recognition,”
2019 Design, Automation & Test in Europe Conference & Exhibition
(DATE), Florence, Italy, 2019.

T. Cao, W.S. Ng, W. L. Goh and Y. Gao, “DWT-PoolFormer: Discrete
wavelet transform-based quantized parallel PoolFormer network
implemented in FPGA for wearable ECG monitoring,” 2024 |IEEE
Biomedical Circuits and Systems Conference (BioCAS), Xi’an, China,
2024.

S. Han, et al., “ESE: Efficient Speech Recognition Engine with Sparse
LSTM on FPGA,” 2017 ACM/SIGDA international symposium on Field-
programmable gate arrays, 2017.

A. Vaswani, et al., “Attention is all you need,” Advances in Neural
Information Processing Systems (NIPS), 2017.

P. Warden, “Speech commands: A dataset for limited-vocabulary speech
recognition,” arXiv:1804.03209, 2018, [online] Available:
https://arxiv.org/abs/1804.03209.

M. Croce, B. Friend, F. Nesta, L. Crespi, P. Malcovati and A. Baschirotto,
“A 760-nW, 180-nm CMOS fully analog voice activity detection system
for domestic environment,” IEEE J. Solid-State Circuits, vol. 56, no. 3,
pp. 778-787, Mar. 2021.

S. Davis and P. Mermelstein, “Comparison of parametric representations
for monosyllabic word recognition in continuously spoken sentences,”
IEEE Trans. Acoust., Speech, Signal Process., vol. 28, no. 4, pp. 357-366,
Aug. 1980, doi: 10.1109/TASSP.1980.1163420.

R. G. Carvajal et al., "The flipped voltage follower: a useful cell for low-
voltage low-power circuit design IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 52, no. 7, pp. 1276-1291, July 2005, doi:
10.1109/TCSI.2005.851387.

Z. Zhang, T. Zhang, C. Shen, W. L. Goh and Y. Gao, "A Nanowatt
Temperature-Independent Tunable Active Capacitance Multiplier with
DC Compensation in 0.13—um CMOS," 2023 IEEE International
Symposium on Circuits and Systems (ISCAS), Monterey, CA, USA, 2023,
pp. 1-5, doi: 10.1109/ISCAS46773.2023.10181779.

R. Mittal etal., "A 6.4-GS/s 1-GHz BW Continuous-Time Pipelined ADC
With Time-Interleaved Sub-ADC-DAC Achieving 61.7-dB SNDR in 16-
nm FinFET," in IEEE Journal of Solid-State Circuits, vol. 59, no. 4, pp.
1158-1170, April 2024, doi: 10.1109/JSSC.2023.3338686.

T. Cao, W. Yu, Y. Gao, C. Liu, S. Yan and W. L. Goh, “RRAM-
PoolFormer: a resistive memristor-based PoolFormer modeling and
training framework for edge-Al applications,” 2023 IEEE International
Symposium on Circuits and Systems (ISCAS), Monterey, CA, USA, 2023
T. Cao et al., “Edge PoolFormer: Modeling and training of PoolFormer
network on RRAM crossbar for edge-Al applications,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 33, no. 2, pp. 384-394, Feb. 2025,
doi: 10.1109/TVLSI.2024.3472270.

J. S. P. Giraldo, V. Jain, and M. Verhelst, “Efficient execution of temporal
convolutional networks for embedded keyword spotting,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 29, no. 12, pp. 22202228, Dec.
2021, doi: 10.1109/TVLSI.2021.3120189.

J.Yoon, D. Lee, N. Kim, S. -J. Lee, G. -H. Kwak and T. -H. Kim, “A real-
time keyword spotting system based on an end-to-end binary
convolutional neural network in FPGA,” 2023 IEEE Symposium in Low-
Power and High-Speed Chips (COOL CHIPS), Tokyo, Japan, 2023.

S. Yang, Z. Gong, K. Ye, Y. Wei, Z. Huang and Z. Huang, “EdgeRNN: a
compact speech recognition network with spatio-temporal features for
edge computing,” IEEE Access, vol. 8, pp. 81468-81478, 2020.

B. Kim, S. Chang, J. Lee, and D. Sung, “Broadcasted Residual Learning
for Efficient Keyword Spotting,” in Proc. INTERSPEECH, 2021.



https://arxiv.org/abs/1804.03209

